The biggest imprudence of 2020: pick up his grandson to rescue the cat

first_imgA grandmother walking with her grandson. Image: iStock Grandmothers are people who are always characterized as sweet and tender ladies, people who always have time for their relatives and who, with each of their acts, demonstrate the love they have for us. From cooking delicious and abundant dishes with which we could survive for a whole week, to spending money suspiciously so that no one else notices … grandmothers always do things to take better care of their grandchildren. However, not all grandmothers are equal, and a recent video posted on social networks shows us. In China, specifically in Nanchong City, a grandmother made us go through one of the most distressing scenes of the moment on the Internet. This lady, seeing her cat trapped on the ledge of the lower floor, decided to rescue him in the most surreal way. The old woman tied a rope to her grandson about 7 years of age, and then hung it from the balcony of her house, located on a fifth floor, so that the little one could catch the cat.This shocking scene was recorded by a pedestrian who was in the area and has already become a viral phenomenon in the world. Many users of different social networks to see it have confessed to having done it with much agony for fear that the child could rush to the ground at any time, from such a height. No one understands why he puts his own grandson in danger in this way.#ZCN | Granny hangs her grandson from a fifth floor to rescue the cat.A grandmother decided that the best way to save her cat, who was on a terrace on the fifth floor, was to hang her grandson by tying a rope to lower him to where the cat was pic.twitter.com/d3kwCz5abk– ZonaCeroNoticias (@noticiazonacero) January 11, 2020As a result, and after receiving so much criticism from users from all over the world, the protagonist grandmother of the video apologized publicly. According to her, it was not until after watching the video that she noticed the imprudence she committed and that, at that moment, she was totally sure that everything would be fine.center_img A distressing video starring a grandmother and grandsonHe hangs his grandson from a balcony to save the catGrandma has apologized to realize the dangerlast_img read more

For diabetes, stem cell recipe offers new hope

first_imgDouglas Melton is as impatient as anyone for a cure for diabetes. His son developed the disease as an infant, and his daughter was diagnosed at age 14. For most of the past 2 decades, the developmental biologist at the Harvard Stem Cell Institute has focused his research on finding a cure. This week, he and his colleagues report a potentially significant step toward that goal: a recipe that can turn human stem cells into functional pancreatic β cells—the cells that are destroyed by the body’s own immune system in type 1 diabetes patients such as Melton’s son and daughter. The cells the researchers produced respond to glucose by producing insulin, just as normal β cells do. And when implanted into mice with a form of diabetes, the cells can cure the disorder.“The diabetes research community has been waiting for ages for this type of breakthrough,” says Jorge Ferrer, who studies the genetics of β cells at Imperial College London. The lab-generated cells should be a valuable tool for studying diabetes and, Melton hopes, could eventually be used to treat patients.Throughout the day, the pancreas regulates the body’s blood sugar levels, responding to an increase in glucose after a meal by secreting insulin, which helps cells take up the sugar. In type 1 diabetes, the body’s immune system mistakenly kills the β cells for still-unknown reasons, and the body is left without insulin. People control their diabetes by injecting carefully calibrated doses of insulin. But matching the precise insulin control achieved by the healthy pancreas is almost impossible, so researchers have hoped for decades to find a way to replace the missing cells.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)When scientists isolated human embryonic stem (ES) cells in 1998, hopes soared. ES cells are pluripotent, which means that in theory they can turn into any of the body’s cell types—including β cells. Indeed, one of the first things researchers tried to make from ES cells was pancreatic β cells. Later they tried with so-called induced pluripotent stem (iPS) cells, made by reprogramming adult cells into an embryolike state. Either way, “it’s proved to be an extraordinarily complicated undertaking,” says Mark Magnuson of Vanderbilt University in Nashville, who studies pancreatic development.Several teams have turned stem cells into precursors of β cells, which mature when placed into experimental animals. But the cells take 6 weeks to become fully functional β cells, and they can’t be studied easily outside the body. Nevertheless, a clinical trial started last month to test their therapeutic use in patients.In Cell this week, Melton and his colleagues report a complex recipe that can transform either human ES cells or iPS cells directly into functional β cells. The breakthrough is based on more than a decade of tenacious work in Melton’s lab. He and his colleagues have painstakingly studied the signals that guide pancreas development, applying what they and others have found to develop a method that turns stem cells into mature β cells. “There’s no magic to this,” Melton says. “It’s not a discovery so much as applied developmental biology.”The protocol “is reproducible, but it is tedious,” Melton adds. The stem cells are grown in flasks and require five different growth media and 11 molecular factors, from proteins to sugars, added in precise combinations over 35 days to turn them into β cells. On the bright side, Melton says, the technique can produce 200 million β cells in a single 500 ml flask—enough, in theory, to treat a patient. Melton says the protocol seems to work equally well with ES and iPS cell lines.Before the cells can be used to treat type 1 diabetes, researchers need to find a way to protect them from immunologic rejection. The same autoimmune response that triggered the disease would likely attack new β cells derived from the patient’s own iPS cells, and a normal immune response would destroy ES-derived β cells, which would appear foreign. (That has been a challenge for efforts to treat type 1 diabetes with received transplants of β cells from deceased organ donors.) Melton and colleagues are now exploring how to physically encapsulate their stem cell–derived β cells, as well as ways to modify the β cells to enable them to ward off immune attack.In the meantime, the cells should help the study of the autoimmune disorder. The technique “potentially provides ways to create model systems for studying the genetic basis of diabetes, or to discover novel therapies to enhance existing β cells,” Ferrer says. Melton says his lab has iPS cell lines from people with diabetes—both type 1 and type 2, in which the β cells are not destroyed—and healthy controls. They are generating β cells from those cell lines to look for differences that might explain how the different forms of the disease develop. They will also screen for chemicals that can stop or even reverse the damage diabetes does to β cells.  Melton says his son and daughter—now 23 and 27 years old—were pleased but unsurprised by his group’s progress. Reversing the parent-child role, they gently nagged him to “get going and solve the [immune-rejection] problem.”last_img read more